Study on deep-learning-based identification of hydrometeors observed by dual polarization Doppler weather radars
نویسندگان
چکیده
Hydrometeor classification for dual polarization Doppler weather radar echo is a procedure that identifies hydrometeor types based on the scattering properties of precipitation particles to polarized electromagnetic waves. The difference in shape, size, or spatial orientation among different types of hydrometeor will produce different scattering characteristics for the electromagnetic waves in a certain polarization state. Moreover, the polarimetric measurements, which are calculated from the radar data and closely associated with these characteristics, are also different. The comprehensive utilization of these polarimetric measurements can effectively improve the identification accuracy of the phase of various hydrometeors. In this paper, a new identification method of the hydrometeor type based on deep learning (DL) and fuzzy logic algorithm is proposed: firstly, the feature extraction method based on deep learning is used for training the correlation among multiple parameters and extracting the relatively independent features. Secondly, the Softmax classifier is applied to classify the precipitation patterns, including rain, snow, and hail, and it is based on the features extracted by deep learning algorithm. Finally, the fuzzy logic algorithm is adopted to identify the hydrometeor types in various precipitation patterns. In order to test the accuracy of the classification results, the hydrometeor classifier has been applied to a stratiform cloud precipitation process, and it is found that the classification results agree well with the other polarimetric products.
منابع مشابه
Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables
The United States Weather Surveillance Radar-1988 Doppler (WSR-88D) radar network has been upgraded to dual-polarization capabilities, providing operational and research meteorologists with a wealth of new information regarding the types and distributions of hydrometeors within precipitating storms, as well as a means for improved radar data quality. In addition to the conventional moments of r...
متن کاملPolarimetric Radar Variables
The United States Weather Surveillance Radar-1988 Doppler (WSR-88D) radar network has been upgraded to dual-polarization capabilities, providing operational and research meteorologists with a wealth of new information regarding the types and distributions of hydrometeors within precipitating storms, as well as a means for improved radar data quality. In addition to the conventional moments of r...
متن کاملDual-polarization C-band weather radar algorithms for rain rate estimation and hydrometeor classification in an alpine region
Dual polarization is becoming the standard for new weather radar systems. In contrast to conventional weather radars, where the reflectivity is measured in one polarization plane only, a dual polarization radar provides transmission in either horizontal, vertical, or both polarizations while receiving both the horizontal and vertical channels simultaneously. Since hydrometeors are often far fro...
متن کاملDifferential power calibration for weather radar
Dual polarized weather radars, radars that can transmit both horizontal (H) and vertical (V) polarized waves, are becoming more common in the world. Dual polarization is accomplished via fast alternate transmission of H and V polarization or simultaneous H and V polarization transmission. The simultaneous H and V transmit mode is becoming quite popular since a high power, costly, polarization s...
متن کاملIntercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ) and Spaceborne Radars (CloudSat-CPR and TRMM-PR)
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017